[KASBP AI-biotech Seminar] Beyond AlphaFold – Building AI-Powered Biomarker Platforms for the Next Generation of Drug Discovery

Sunghee Yun

Co-Founder & CTO - AI Technology & Biz Dev @ Erudio Bio, Inc. Advisor & Evangelist - Biz Dev @ CryptoLab, Inc. Adjunct Professor & Advisory Professor @ Sogang Univ. & DGIST

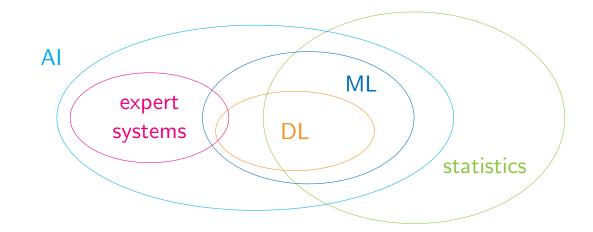
About Speaker

- Co-Founder & CTO @ Erudio Bio, San Jose & Novato, CA, USA
- Advisor & Evangelist @ CryptoLab, Inc., San Jose, CA, USA
- Chief Business Development Officer @ WeStory.ai, Cupertino, CA, USA
- Advisory Professor, Electrical Engineering and Computer Science @ DGIST, Korea
- Adjunct Professor, Electronic Engineering Department @ Sogang University, Korea
- Global Advisory Board Member @ Innovative Future Brain-Inspired Intelligence System Semiconductor of Sogang University, Korea
- KFAS-Salzburg Global Leadership Initiative Fellow @ Salzburg Global Seminar, Salzburg, Austria
- Technology Consultant @ Gerson Lehrman Gruop (GLG), NY, USA
- Co-Founder & CTO / Head of Global R&D & Chief Applied Scientist / Senior Fellow @ Gauss Labs, Inc., Palo Alto, CA, USA 2020 – 2023

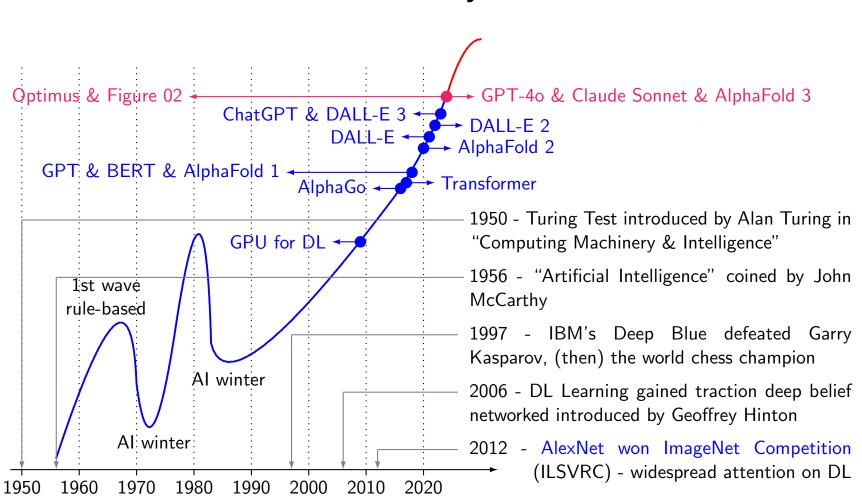
 Senior Applied Scientist @ Amazon.com, Inc., Vancouver, BC, Canada 	- 2020
• Principal Engineer @ Software R&D Center, DS Division, Samsung, Korea	- 2017
• Principal Engineer @ Strategic Marketing & Sales Team, Samsung, Korea	- 2016
• Principal Engineer @ DT Team, DRAM Development Lab, Samsung, Kore	ea – 2015
 Senior Engineer @ CAE Team, Samsung, Korea 	- 2012
 PhD - Electrical Engineering @ Stanford University, CA, USA 	- 2004
 Development Engineer @ Voyan, Santa Clara, CA, USA 	- 2001
 MS - Electrical Engineering @ Stanford University, CA, USA 	- 1999
• BS - Electrical & Computer Engineering @ Seoul National University	1994 – 1998

Highlight of Career Journey

- BS in EE @ SNU, MS & PhD in EE @ Stanford University
 - Convex Optimization Theory, Algorithms & Software
 - advised by Prof. Stephen P. Boyd
- Principal Engineer @ Samsung Semiconductor, Inc.
 - AI & Convex Optimization
 - collaboration with DRAM/NAND Design/Manufacturing/Test Teams
- Senior Applied Scientist @ Amazon.com, Inc.
 - e-Commerce Als anomaly detection, deep RL, and recommender system
 - Jeff Bezos's project boosted up sales by \$200M via Amazon Mobile Shopping App
- Co-Founder & CTO / Global R&D Head & Chief Applied Scientist @ Gauss Labs, Inc.
- Co-Founder & CTO AI Technology & Business Development @ Erudio Bio, Inc.


Artificial Intelligence	- 5
 AI history & recent significant achievements 	
 Market indicators for unprecedented AI progress 	
Al Agents	- 26
– Big Data $ ightarrow$ ML/DL $ ightarrow$ LLM & genAl $ ightarrow$ Agentic Al	
 Future of society powered by AI agents 	
 AI and Biotech 	- 34
 Serendipities around Als 	- 54
 K-PAI - Silicon Valley Private AI Forum 	
Selected references	- 56
References	- 58

Artificial Intelligence


Definition and History

Definition & relation to other technologies

- Al
 - is technology doing tasks requiring human intelligence, such as learning, problemsolving, decision-making & language understanding
 - encompasses range of technologies, methodologies, applications & products
- AI, ML, DL, statistics & expert system¹ [HGH⁺22]

¹ML: machine learning & DL: deep learning

History

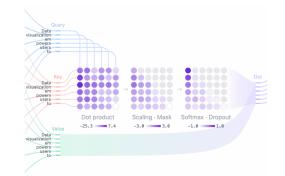
[KASBP AI-biotech Seminar] Beyond AlphaFold - Artificial Intelligence - Definition and History

Significant AI Achievements - 2014 - 2025

Deep learning revolution

- 2012 2015 DL revolution²
 - CNNs demonstrated exceptional performance in image recognition, *e.g.*, *AlexNet's* victory in ImageNet competition
 - widespread adoption of DL learning in CV transforming industries
- 2016 AlphaGo defeats human Go champion
 - DeepMind's AlphaGo defeated world champion in Go, extremely complex game believed to be beyond AI's reach
 - significant milestone in RL Al's potential in solving complex & strategic problems

 2 CV: computer vision, NN: neural network, CNN: convolutional NN, RL: reinforcement learning


[KASBP AI-biotech Seminar] Beyond AlphaFold - Artificial Intelligence - Significant AI Achievements - 2014 – 2025

10

Transformer changes everything

- 2017 2018 Transformers & NLP breakthroughs³
 - Transformer (e.g., BERT & GPT) revolutionized NLP
 - major advancements in, e.g., machine translation & chatbots
- 2020 AI in healthcare AlphaFold & beyond
 - DeepMind's AlphaFold solves 50-year-old protein folding problem predicting 3D protein structures with remarkable accuracy
 - accelerates drug discovery and personalized medicine offering new insights into diseases and potential treatments

³NLP: natural language processing, GPT: generative pre-trained transformer

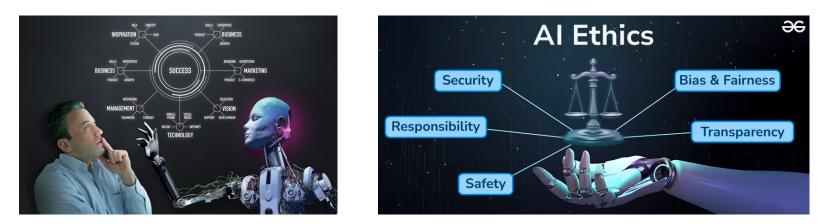
11

Lots of breakthroughs in AI technology and applications in 2024

- proliferation of advanced AI models
 - GPT-4o, Claude Sonnet, Claude 3 series, Llama 3, Sora, Gemini
 - transforming industries such as content creation, customer service, education, etc.
- breakthroughs in specialized AI applications
 - Figure 02, Optimus, AlphaFold 3
 - driving unprecedented advancements in automation, drug discovery, scientific understanding - profoundly affecting healthcare, manufacturing, scientific research

Major AI Breakthroughs in 2025

- next-generation foundation models
 - GPT-5 and Claude 4 demonstrate emergent reasoning abilities
 - open-source models achieving parity with leading commercial systems from 2024
- hardware innovations
 - NVIDIA's Blackwell successor architecture delivering 3-4x performance improvement
 - AMD's MI350 accelerators challenging NVIDIA's market dominance
- Al-human collaboration systems
 - seamless multimodal interfaces enabling natural human-AI collaboration
 - AI systems effectively explaining reasoning and recommendations
 - augmented reality interfaces providing real-time AI assistance in professional contexts

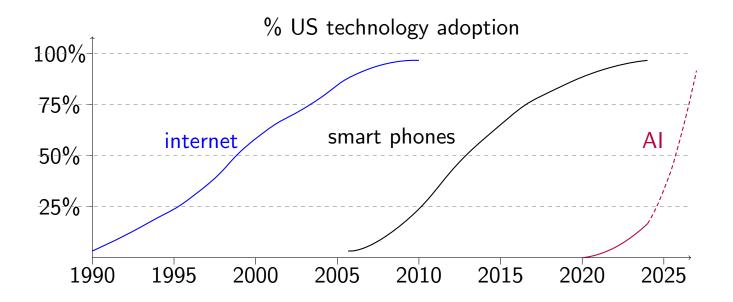


[KASBP AI-biotech Seminar] Beyond AlphaFold - Artificial Intelligence - Significant AI Achievements - 2014 – 2025

13

Transformative impact of AI - reshaping industries, work & society

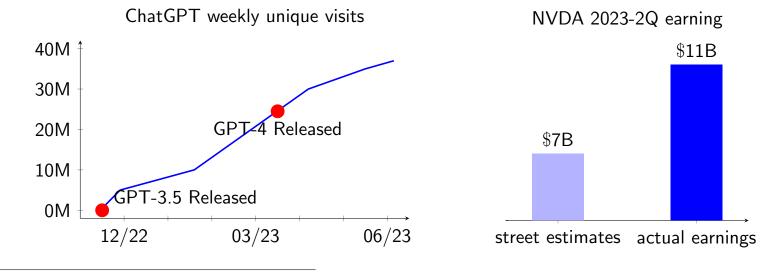
- accelerating human-AI collaboration
 - not only reshaping industries but altering how humans interact with technology
 - Al's role as collaborator and augmentor redefines productivity, creativity, the way we address global challenges, *e.g.*, *sustainability & healthcare*
- Al-driven automation *transforms workforce dynamics* creating new opportunities while challenging traditional job roles
- *ethical AI considerations* becoming central not only to business strategy, but to society as a whole *influencing regulations, corporate responsibility & public trust*



[KASBP AI-biotech Seminar] Beyond AlphaFold - Artificial Intelligence - Significant AI Achievements - 2014 – 2025

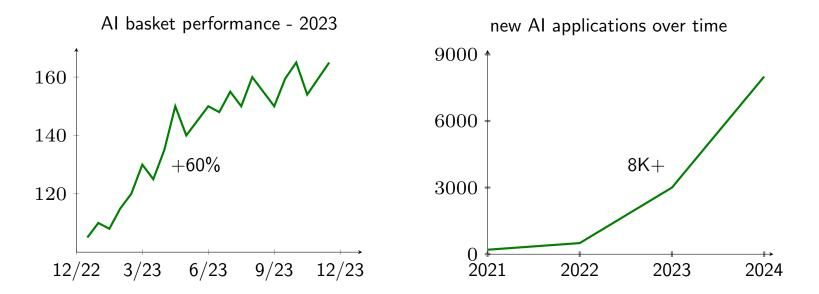
Measuring Al's Ascent

Where are we in AI today?

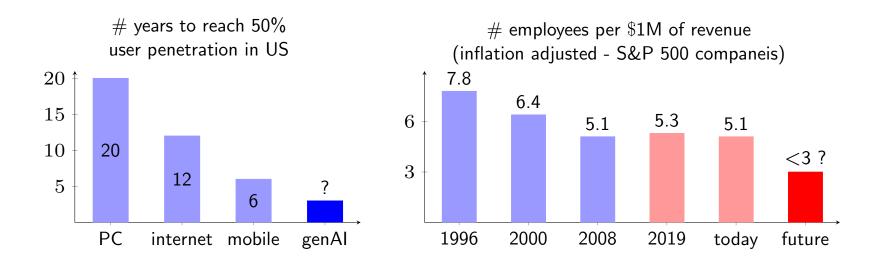

- sunrise phase currently experiencing dawn of AI era with significant advancements and increasing adoption across various industries
- early adoption in early stages of AI lifecycle with widespread adoption and innovation across sectors marking significant shift in technology's role in society

[[]KASBP AI-biotech Seminar] Beyond AlphaFold - Artificial Intelligence - Measuring AI's Ascent

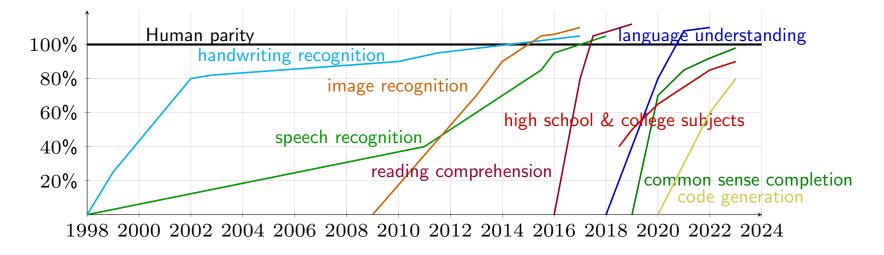
Explosion of AI ecosystems - ChatGPT & NVIDIA


- took only 5 months for ChatGPT users to reach 35M
- NVDIA 2023 Q2 earning exceeds market expectation by big margin \$7B vs \$13.5B
 - surprisingly, 101% year-to-year growth
 - even more surprisingly gross margin was 71.2% up from 43.5% in previous year⁴

⁴source - Bloomberg

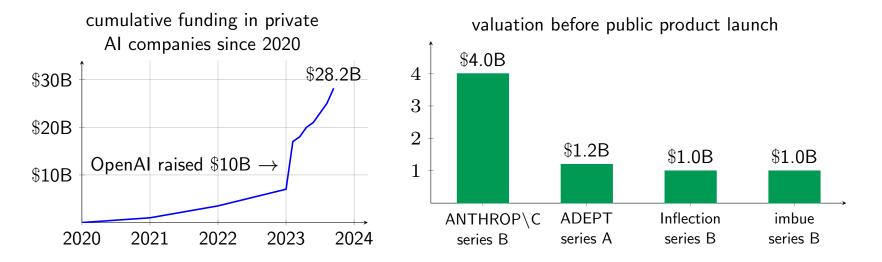

Explosion of AI ecosystems - AI stock market

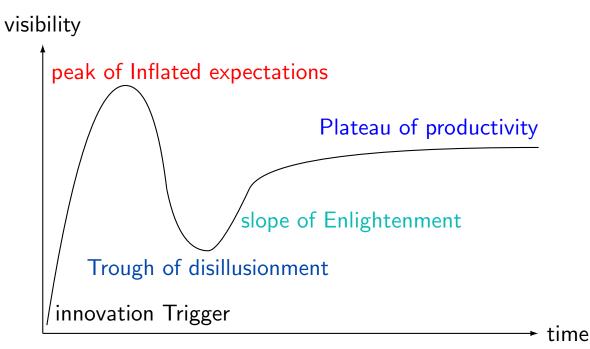
- Al investment surge in 2023 portfolio performance soars by 60%
 - Al-focused stocks significantly outpaced traditional market indices
- over 8,000 new AI applications developed in last 3 years
 - applications span from healthcare and finance to manufacturing and entertainment


Al's transformative impact - adoption speed & economic potential

- adoption has been twice as fast with platform shifts suggesting
 - increasing demand and readiness for new technology improved user experience & accessibility
- Al's potential to drive economy for years to come
 - 35% improvement in productivity driven by introduction of PCs and internet
 - greater gains expected with AI proliferation

Al getting more & more faster


- steep upward slopes of AI capabilities highlight accelerating pace of AI development
 - period of exponential growth with AI potentially mastering new skills and surpassing human capabilities at ever-increasing rate
- closing gap to human parity some capabilities approaching or arguably reached human parity, while others having still way to go
 - achieving truly human-like capabilities in broad range remains a challenge


[[]KASBP AI-biotech Seminar] Beyond AlphaFold - Artificial Intelligence - Measuring AI's Ascent

Massive investment in AI

- explosive growth cumulative funding skyrocketed reaching staggering \$28.2B
- OpenAI significant fundraising (=\$10B) fueled rapid growth
- *valuation surge* substantial valuations even before public products for stella companies
- *fierce competition for capital* among AI startups driving innovation & accelerating development
- massive investment indicates *strong belief in & optimistic outlook for potential of AI* to revolutionize industries & drive economic growth

Is AI hype?

- innovation trigger technology breakthrough kicks things off
- peak of inflated expectations early publicity induces many successes followed by even more
- trough of disillusionment expectations wane as technology producers shake out or fail
- slope of enlightenment benefit enterprise, technology better understood, more enterprises fund pilots

Fiber vs cloud infrastructure

- fiber infrastructure 1990s
 - Telco Co's raised \$1.6T of equity & \$600B of debt
 - bandwidth costs decreased 90% within 4 years
 - companies Covage, NothStart, Telligent, Electric Lightwave, 360 networks, Nextlink, Broadwind, UUNET, NFS Communications, Global Crossing, Level 3 Communications
 - became *public good*

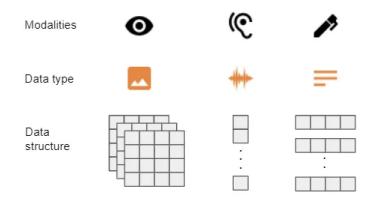
- cloud infrastructure 2010s
 - entirely new computing paradigm
 - mostly public companeis with data centers
 - big 4 hyperscalers generate \$150B
 + annual revenue

[KASBP AI-biotech Seminar] Beyond AlphaFold - Artificial Intelligence - Is AI hype?

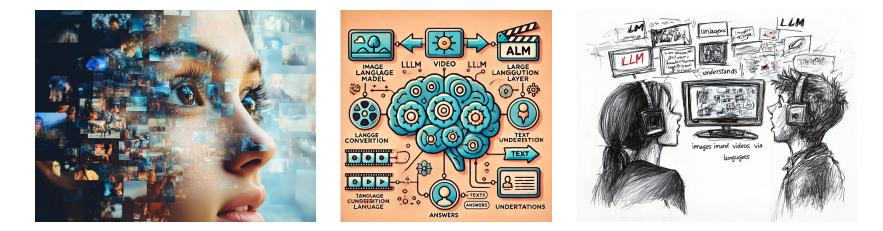
Yes	&	No
-----	---	----

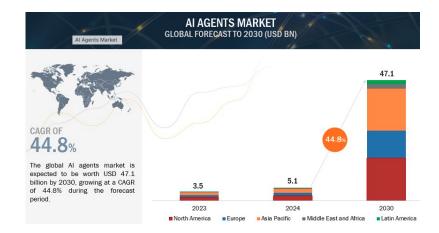
speaker's views
 OpenAl still operating at a loss; business model still not clear
 gradual value creation across broad range of industries and technologies (<i>e.g.</i>, CV, LLMs, RL) unlike fiber optic bubble in 1990s
 self-driving cars delayed for over 15 years, with limited hope for achieving level 5 autonomy AI, however, has proven useful within a shorter 5-year span, with enterprises eagerly adopting
 Al already providing significant utility across various domains vs quantum computing remains promising in theory but lacks widespread practical utility

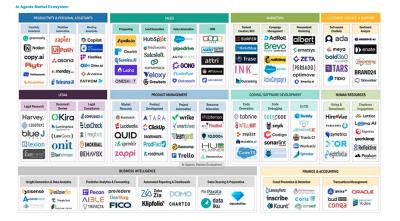

AI Agents


- 2010 \sim Big Data
- 2012 \sim Deep Learning
- 2017 \sim Transformer Attention is All you need!
- 2022 \sim LLM & genAl
- 2024 \sim AI Agent (Agentic AI)

Multimodal learning

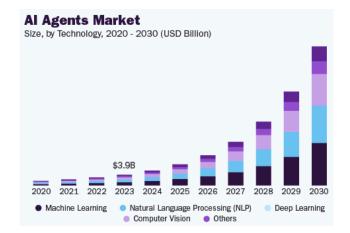

- understand information from multiple modalities, e.g., text, images, audio, video
- representation learning methods
 - combine multiple representations or learn multimodal representations simultaneously
- applications
 - images from text prompt, videos with narration, musics with lyrics
- collaboration among different modalities
 - understand image world (open system) using language (closed system)


Implications of success of LLMs


- many researchers change gears towards LLM
 - from computer vision (CV), speach, music, video, even reinforcement learning
- LLM is not only about NLP . . . humans have . . .
 - evolved to optimize natural language structures for eons
 - handed down knowledge using this natural languages for thousands of years
 - internal structure (or equivalently, representation) of natural languages optimized via thousands of generation by evolution
- LLM connects non-linguistic world (open system) via natural languages (closed system)

Multimodal AI (mmAI)

- mmAI systems processing & integrating data from multiple sources & modalities, to generate unified response / decision
- 1990s 2000s early systems initial research combining basic text & image data
- 2010s CNNs & RNNs enabling more sophisticated handling of multimodality
- 2020s modern multimodal models Transformer-based architectures handling complex multi-source data at highly advanced level
- mmAl *mimics human cognitive ability* to interpret and integrate information from various sources, leading to holistic decision-making


mmAI Technology

- core components
 - data preprocessing images, text, audio & video
 - architectures unified Transformer-based (e.g., ViT) & cross-attention mechanisms / hybrid architectures (e.g., CNNs + LLMs)
 - integration layers fusion methods for combining data representations from different modalities
- technical challenges
 - data alignment accurate alignment of multimodal data
 - computational demand high-resource requirements for training and inferencing
 - diverse data quality manage variations in data quality across modalities
- advancements
 - multimodal embeddings shared feature spaces interaction between modalities
 - self-supervised learning leverage unlabeled data to learn representations across modalities

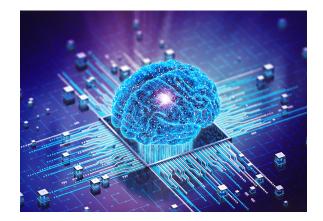
Al agents powered by multimodal LLMs

- foundation
 - integrate multimodal AI capabilities for enhanced interaction & decision-making
- components
 - perceive environment through multiple modalities (visual, audio, text), process using LLM technology, generate contextual responses & take actions
- capabilities
 - understand complex environments, reason across modalities, engage in natural interactions, adapt behavior based on context & feedback

AI Agents				
Functional				
Code/Application generation	Customer	Support / Success Quality assurance		
Cogna: Lovable . txt . IGENT. AI a-gen orginal @ marblism & poolside O Mag		eople zowie ⋇мユ ay Xfini ≋PolyAI Myia LogicStar MaiHEM		
GTM		Security		
11 airs 🗄 🕸 Momentum Vendi 🖉 sale	istorge Synthflow 🛞 sierra 🌗 luna	uai Qevlar Al C AlKo ♂ Tracecat Splx"		
Vertical				
Legal	Finance	Healthcare		
Leya Lega // Wordsmith	FINSTER AI (1) DECKMAT	CH Co:Helm Flinn 🤽 phare health		
	DECKMAN			
Lastive Avantia		hema		
O Avantia	ClaimSorted Vivox AI	hema 🦰 🥂 Tandem		
Learning Avantia	ClaimSorted Vivox Al	hema Tandem		
Contraction Avantia	ClaimSorted Vivox Al	hema Tandem		

Al agents - Present & Future

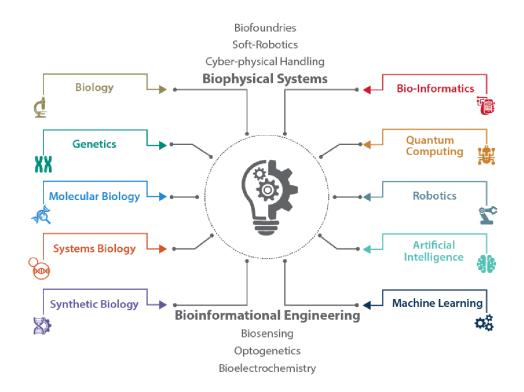
- emerging applications
 - scientific research agents analyzing & running experiments & generating hypotheses
 - creative collaboration AI partners in design & art combining multiple mediums
 - environmental monitoring processing satellite sensor data for climate analysis
 - healthcare enhanced diagnostic combining imaging, e.g., MRI, with patient history
 - customer experience virtual assistants understanding spoken language & visual cues
 - autonomous vehicles integration of visual, radar & audio data
- future
 - ubiquitous AI agents seamless integration into everyday devices
 - highly tailored personalized experience in education, entertainment & healthcare



AI & Biotech

Al in biology

- Al has been used in biological sciences, and science in general
- Al's ability to process large amounts of raw, unstructured data (*e.g.*, DNA sequence data)
 - reduces time and cost to conduct experiments in biology
 - enables others types of experiments that previously were unattainable
 - contributes to broader field of engineering biology or biotechnology
- Al increases human ability to make direct changes at cellular level and create novel genetic material (*e.g.*, DNA and RNA) to obtain specific functions

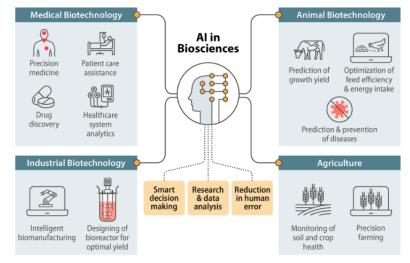

[KASBP AI-biotech Seminar] Beyond AlphaFold - AI & Biotech

Biotech

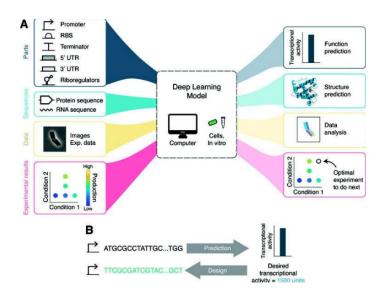
Biotech

- biotechnology
 - is multidisciplinary field leveraging broad set of sciences and technologies
 - relies on and builds upon advances in other fields such as nanotechnology & robotics, and, increasingly, AI
 - enables researchers to read and write DNA
 - sequencing technologies "read" DNA while gene synthesis technologies take sequence data and "write" DNA turning data into physical material
- 2018 National Defense Strategy & Senior US Defense and Intelligence Officials identified emerging technologies that could have disruptive impact on US national security [Say21]
 - AI, lethal autonomous weapons, hypersonic weapons, directed energy weapons, biotechnology, quantum technology
- other names for biotechnology are engineering biology, synthetic biology, biological science (when discussed in context of AI)

- sciences and technologies enabling biotechnology include (but not limited to)
 - (molecular) biology, genetics, systems biology, synthetic biology, bio-informatics, quantum computing, robotics [DFJ22]



Convergence of AI and biological design


- AI & biological sciences converging [BKP22]
 - each building upon the other's capabilities for new research and development across multiple areas
- Demis Hassabis, CEO & cofounder of DeepMind, said of biology [Toe23]

". . . biology can be thought of as information processing system, albeit extraordinarily complex and dynamic one . . . just as mathematics turned out to be the right description language for physics, biology may turn out to be *the perfect type of regime for the application of Al!*"

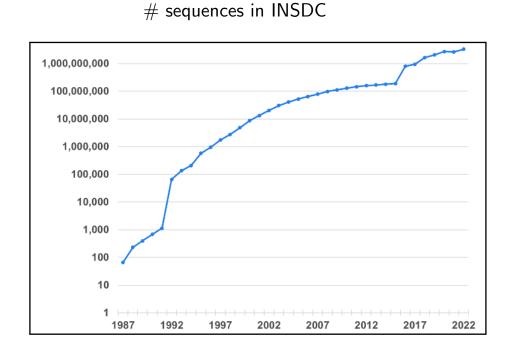
- both AI & biotech rely on and build upon advances in other scientific disciplines and technology fields, such as nanotechnology, robotics, and increasingly big data (*e.g.*, genetic sequence data)
 - each of these fields itself convergence of multiple sciences and technologies
- so their impacts can combine to create new capabilities

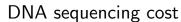
Multi-source genetic sequence data

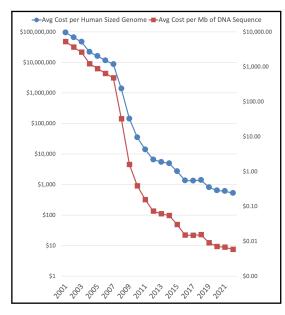
- Al, essential to analyzing exponential growth of genetic sequence data
 - "Al will be essential to fully understanding how genetic code interacts with biological processes" - US National Security Commission on Artificial Intelligence (NSCAI)
 - process huge amounts of biological data, *e.g.*, genetic sequence data, coming from different biological sources for understanding complex biological systems
 - sequence data, molecular structure data, image data, time-series, omics data
- *e.g.*, analyze genomic data sets to determine the genetic basis of particular trait and potentially uncover genetic markers linked with that trait

Quality & quantity of biological data

- limiting factor, however, is *quality and quantity* of biological data, *e.g.*, DNA sequences, that AI is trained on
 - e.g., accurate identification of particular species based on DNA requires reference sequences of sufficient quality to exist and be available
- databases have varying standards access, type, and quality of information
- design, management, quality standards, and data protocols for reference databases can affect utility of particular DNA sequence






- volume of genetic sequence data grown exponentially as sequencing technology evolved
- more than 1,700 databases incorporating data on genomics, protein sequences, protein structures, plants, metabolic pathways, *etc.*, *e.g.*
 - open-source public database
 - Protein Data Bank, US-funded data center more than *terabyte of threedimensional structure data* for biological molecules, *e.g.*, proteins, DNA, RNA
 - proprietary database
 - Gingko Bioworks more than 2B protein sequences
 - public research groups
 - Broad Institute produces roughly 500 terabases of genomic data per month
- great potential value in aggregate volume of genetic datasets that can be collectively mined to discover and characterize relationships among genes

Volume and sequencing cost of DNA over time

- volume of DNA sequences & DNA sequencing cost
 - data source: National Human Genome Research Institute (NHGRI) [Wet23] & International Nucleotide Sequence Database Collaboration (INSDC)
- more dramatic than Moore's law!

- US National Security Commission on Artificial Intelligence (NSCAI) recommends
 - US fund and prioritize development of a biobank containing *"wide range of high-quality biological and genetic data sets securely accessible by researchers"*
 - establishment of database of broad range of human, animal, and plant genomes would
 - enhance and democratize biotechnology innovations
 - facilitate new levels of AI-enabled analysis of genetic data
- bias availability of genetic data & decisions about selection of genetic data can introduce bias, e.g.
 - training AI model on datasets emphasizing or omitting certain genetic traits can affect how information is used and types of applications developed - *potentially privileging or disadvantaging certain populations*
 - access to data and to AI models themselves may impact communities of differing socioeconomic status or other factors unequally

Emerging Trends in Biotech

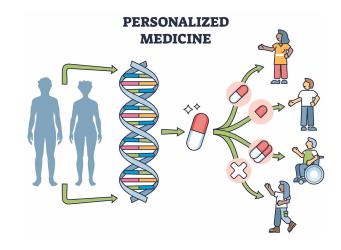
AlphaFold

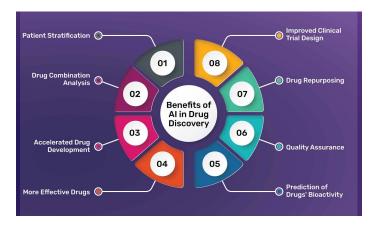
- solving 50-year-old protein folding problem, "one of biology's grand challenges"
 - definition given amino acid sequence, predict how it folds into a 3D structure
 - proteins fold in microseconds, but predicting computationally nearly impossible
- AlphaFold 1 (2018) DL + physics-based energy functions → AlphaFold 2 (2020)
 attention-based NN solving protein folding "in principle" → AlphaFold 3 (2024) diffusion-based DL, drug-protein interactions, protein complexes
- AlphaFold protein structure database
 - >200MM protein structures nearly every known protein, used by >2MM researchers
- Applications & implications
 - drug discovery target identification, lead optimization, side effect prediction
 - enzyme engineering, agriculture, environmental, vaccine development

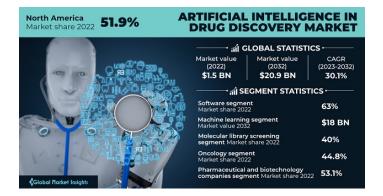
[KASBP AI-biotech Seminar] Beyond AlphaFold - AI & Biotech - Emerging Trends in Biotech

AlphaGo

- deep reinforcement learning with Monte Carlo tree search
 - trained on thousands of years of Go game history
 - AlphaGo Zero learns by playing against itself
- development experience, insight, knowledge, know-how transferred to AlphaFold

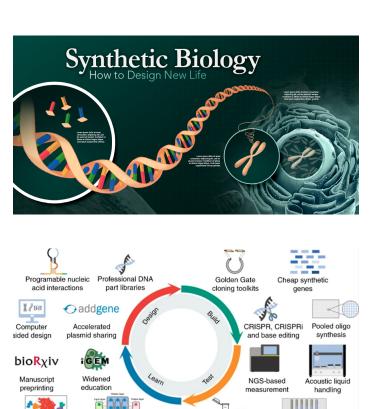



[KASBP AI-biotech Seminar] Beyond AlphaFold - AI & Biotech - Emerging Trends in Biotech

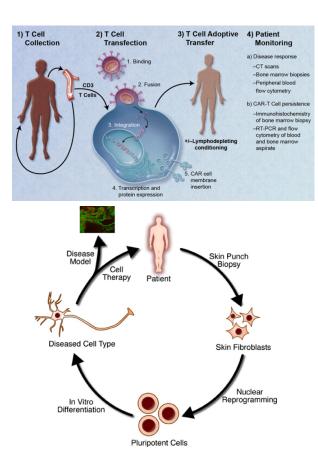

Personalized medicine

- shift from one-size-fits-all approach to tailored treatments
- based on individual genetic profiles, lifestyles & environments
- Al enables analysis of vast data to predict patient responses to treatments, thus enhancing efficacy and reducing adverse effects
- *e.g.*
 - custom cancer therapies
 - personalized treatment plans for rare diseases
 - precision pharmacogenomics
- companies Tempus, Foundation Medicine, *etc.*

Al-driven drug discovery



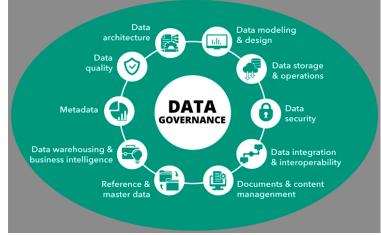
- traditional drug discovery process timeconsuming and costly often taking decades and billions of dollars
- Al streamlines this process by predicting the efficacy and safety of potential compounds with more speed and accuracy
- Al models analyze chemical databases to identify new drug candidates or repurpose existing drugs for new therapeutic uses
- companies Insilco Medicine, Atomwise.


[KASBP AI-biotech Seminar] Beyond AlphaFold - AI & Biotech - Emerging Trends in Biotech

Synthetic biology

- use AI for gene editing, biomaterial production and synthetic pathways
- combine principles of biology and engineering to design and construct new biological entities
- Al optimizes synthetic biology processes from designing genetic circuits to scaling up production
- company Ginkgo Bioworks uses AI to design custom microorganisms for applications ranging from pharmaceuticals to industrial chemicals

[KASBP AI-biotech Seminar] Beyond AlphaFold - AI & Biotech - Emerging Trends in Biotech



Regenerative medicine

- Al advances development of stem cell therapies & tissue engineering
- Al algorithms assist in identifying optimal cell types, predicting cell behavior & personalized treatments
- particularly for conditions such as neurodegenerative diseases, heart failure and orthopedic injuries
- company Organovo leverages AI to potentially improve the efficacy and scalability of regenerative therapies, developing next-generation treatments

Bio data integration

- integration of disparate data sources, including genomic, proteomic & clinical data - one of biggest challenges in biotech & healthcare
- AI delivers meaningful insights only when seamless data integration and interoperability realized
- developing platforms facilitating comprehensive, longitudinal patient data analysis - vital enablers of AI in biotech
- company Flatiron Health working on integrating diverse datasets to provide holistic view of patient health

- Atomwise small molecule drug discovery
- Cradle protein design
- Exscientia precision medicine
- Iktos small molecule drug discovery and design
- Insilico Medicine full-stack drug discovery system
- Schrödinger, Inc. use physics-based models to find best possible molecule
- Absci Corporation antibody design, creating new from scratch antibodies, *i.e.*, "de novo antibodies", and testing them in laboratories

Serendipities around Als

Serendipity or inevitability?

- What if Geoffrey Hinton had not been a persistent researcher?
- What if symbolists won AI race over connectionists?
- What if attention mechanism did not perform well?
- What if Transformer architecture did not perform super well?
- What if OpenAI had not been successful with ChatGPT in 2022?
- What if Jensen Huang had not been crazy about making hardware for professional gamers?
- Is it like Alexander Fleming's Penicillin?
- Or more like Inevitability?

Selected References & Sources

Selected references & sources

- Chris Miller "Chip War: The Fight for the World's Most Critical Technology" (2022)
- Daniel Kahneman "Thinking, Fast and Slow" (2011)
- M. Shanahan "Talking About Large Language Models" (2022)
- A.Y. Halevry, P. Norvig, and F. Pereira "Unreasonable Effectiveness of Data" (2009)
- A. Vaswani, et al. "Attention is all you need" @ NeurIPS (2017)
- S. Yin, et. al. "A Survey on Multimodal LLMs" (2023)
- I.J. Goodfellow, ..., Y. Bengio "Generative adversarial networks (GAN)" (2014)
- T. Kuiken "Artificial Intelligence in the Biological Sciences: Uses, Safety, Security, and Oversight" (2023)
- Stanford Venture Investment Groups
- CEOs & CTOs @ startup companies in Silicon Valley
- VCs on Sand Hill Road Palo Alto, Menlo Park, Woodside in California, USA

References

References

- [BKP22] Abhaya Bhardwaj, Shristi Kishore, and Dhananjay K. Pandey. Artificial intelligence in biological sciences. *Life*, 12(1430), 2022.
- [DFJ22] Thomas A. Dixon, Paul S. Freemont, and Richard A. Johnson. A global forum on synthetic biology: The need for international engagement. *Nature Communications*, 13(3516), 2022.
- [HGH⁺22] Sue Ellen Haupt, David John Gagne, William W. Hsieh, Vladimir Krasnopolsky, Amy McGovern, Caren Marzban, William Moninger, Valliappa Lakshmanan, Philippe Tissot, and John K. Williams. The history and practice of AI in the environmental sciences. *Bulletin of the American Meteorological Society*, 103(5):E1351 – E1370, 2022.
- [HM24] Guadalupe Hayes-Mota. Emerging trends in AI in biotech. *Forbes*, June 2024.
- [Kui23] Todd Kuiken. Artificial intelligence in the biological sciences: Uses, safety, security, and oversight. *Congressional Research Service*, Nov 2023.

[KASBP AI-biotech Seminar] Beyond AlphaFold - References

- [MLZ22] Louis-Philippe Morency, Paul Pu Liang, and Amir Zadeh. Tutorial on multimodal machine learning. In Miguel Ballesteros, Yulia Tsvetkov, and Cecilia O. Alm, editors, Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts, pages 33–38, Seattle, United States, July 2022. Association for Computational Linguistics.
- [Say21] Kelley M. Sayler. Defense primer: Emerging technologies. *Congressional Research Service*, 2021.
- [Toe23] Rob Toews. The next frontier for large language models is biology. *Forbes*, July 2023.
- [Wet23] Kris A. Wetterstrand. Dna sequencing costs: Data, 2023.
- [YFZ⁺24] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal large language models, 2024.

Thank You